Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Mol Ther ; 32(5): 1311-1327, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38449314

ABSTRACT

While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes. Functional analysis of the BCRs of the transduced cells demonstrated that BCRs specific to the pseudotyping envelope proteins mediate viral entry, enabling the vectors to selectively transduce the B cell populations that are capable of producing antibodies specific to their envelope proteins. Lentiviral vector entry via the BCR activated the transduced B cells and induced proliferation and differentiation into mature effectors, such as memory B and plasma cells. BCR-mediated viral entry into clonally specific B cell subpopulations raises new concepts for understanding the biodistribution of transgene expression after systemic administration of lentiviral vectors and offers new opportunities for BCR-targeted gene delivery by pseudotyped lentiviral vectors.


Subject(s)
B-Lymphocytes , Genetic Vectors , Lentivirus , Receptors, Antigen, B-Cell , Transduction, Genetic , Transgenes , Viral Envelope Proteins , Lentivirus/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Animals , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Tropism , Humans , Virus Internalization
2.
J Appl Lab Med ; 7(4): 834-841, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35258088

ABSTRACT

BACKGROUND: Point-of-care SARS-CoV-2 antigen tests have great potential to help combat the COVID-19 pandemic. In the performance of a rapid, antigen-based SARS-CoV-2 test (RAT), our study had 3 main objectives: to determine the accuracy of nasal swabs, the accuracy of using nasopharyngeal swabs for nasal collection (nasalNP), and the effectiveness of using residual extraction buffer for real-time reverse-transcriptase PCR (RT-PCR) confirmation of positive RAT (rPan). METHODS: Symptomatic adults recently diagnosed with COVID-19 in the community were recruited into the study. Nasal samples were collected using either a nasalNP or nasal swab and tested immediately with the RAT in the individual's home by a health care provider. 500 µL of universal transport media was added to the residual extraction buffer after testing and sent to the laboratory for SARS-CoV-2 testing using RT-PCR. Parallel throat swabs tested with RT-PCR were used as the reference comparators. RESULTS: One hundred and fifty-five individuals were included in the study (99 nasal swabs, 56 nasalNP). Sensitivities of nasal samples tested on the RAT using either nasal or nasalNP were 89.0% [95% confidence interval (CI) 80.7%-94.6%] and 90.2% (95% CI 78.6%-96.7%), respectively. rPan positivity agreement compared to throat RT-PCR was 96.2%. CONCLUSIONS: RAT reliably detect SARS-CoV-2 from symptomatic adults in the community presenting within 7 days of symptom onset using nasal swabs or nasalNP. High agreement with rPan can avoid the need for collecting a second swab for RT-PCR confirmation or testing of variants of concern from positive RAT in this population.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
3.
J Med Microbiol ; 70(7)2021 Jul.
Article in English | MEDLINE | ID: mdl-34309503

ABSTRACT

Introduction. The ID NOW is FDA approved for the detection of SARS-CoV-2 in symptomatic individuals within the first 7 days of symptom onset for COVID-19 if tested within 1 h of specimen collection.Gap statement. Clinical data on the performance of the ID NOW are limited, with many studies varying in their study design and/or having small sample size.Aim. In this study we aimed to determine the clinical performance of the ID NOW compared to conventional RT-PCR testing.Methodology. Adults with COVID-19 in the community or hospital were recruited into the study. Paired throat swabs were collected, with one throat swab transported immediately in an empty sterile tube to the laboratory for ID NOW testing, and the other transported in universal transport media and tested by an in-house SARS-CoV-2 RT-PCR assay targeting the E gene.Results. In total, 133 individuals were included in the study; 129 samples were positive on either the ID NOW and/or RT-PCR. Assuming any positive result on either assay represents a true positive, positive per cent agreement (PPA) of the ID NOW compared to RT-PCR with 95 % confidence intervals was 89.1 % (82.0-94.1%) and 91.6 % (85.1-95.9%), respectively. When analysing individuals with symptom duration ≤7 days and who had the ID NOW performed within 1 h (n=62), ID NOW PPA increased to 98.2 %.Conclusion. Results from the ID NOW were reliable, especially when adhering to the manufacturer's recommendations for testing.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Adult , False Negative Reactions , False Positive Reactions , Female , Humans , Male , Nucleic Acid Amplification Techniques , Reproducibility of Results , Time Factors
4.
J Virol Methods ; 293: 114151, 2021 07.
Article in English | MEDLINE | ID: mdl-33839186

ABSTRACT

In the current pandemic of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the co-circulation of SARS-CoV-2 and other respiratory viruses during the upcoming fall and winter seasons may present an unprecedented burden of respiratory disease in the population. Important respiratory viruses that will need to be closely monitored during this time include SARS-CoV-2, influenza A and influenza B. The epidemiology of these viruses is very similar in terms of susceptible populations, mode of transmission, and the clinical syndromes, thus the etiological agent will be difficult to differentiate without target specific assays. The availability of a sensitive and specific multiplex assay that can simultaneously detect all these targets will be valuable. Here we report the validation of a real-time reverse transciptase-PCR assay for the simultaneous detection of SARS-CoV-2, influenza A and influenza B. This multiplex assay is comparable to its singleplex counterparts with a limit-of-detection being less than 5 copies/reaction, 100 % specificity, over seven logs of dynamic range, less than 1 % coefficientof variation showing high precision, and equivalent accuracy using patient samples. It also offers the added benefits of savings in reagents and technologist time while improving testing efficiency and turn-around-times in order to respond effectively to the ongoing pandemic.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Multiplex Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Coinfection/diagnosis , Humans , Reproducibility of Results , Sensitivity and Specificity
5.
Eur J Clin Microbiol Infect Dis ; 40(8): 1721-1726, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33742322

ABSTRACT

SARS-CoV-2 antigen tests used at the point-of-care, such as the Abbott Panbio, have great potential to help combat the COVID-19 pandemic. The Panbio is Health Canada approved for the detection of SARS-CoV-2 in symptomatic individuals within the first 7 days of COVID-19 symptom onset(s). Symptomatic adults recently diagnosed with COVID-19 in the community were recruited into the study. Paired nasopharyngeal (NP), throat, and saliva swabs were collected, with one paired swab tested immediately with the Panbio, and the other transported in universal transport media and tested using real-time reverse-transcriptase polymerase chain reaction (RT-PCR). We also prospectively evaluated results from assessment centers within the community. For those individuals, an NP swab was collected for Panbio testing and paired with RT-PCR results from parallel NP or throat swabs. One hundred and forty-five individuals were included in the study. Collection of throat and saliva was stopped early due to poorer performance (throat sensitivity 57.7%, n=61, and saliva sensitivity 2.6%, n=41). NP swab sensitivity was 87.7% [n=145, 95% confidence interval (CI) 81.0-92.7%]. There were 1641 symptomatic individuals tested by Panbio in assessment centers with 268/1641 (16.3%) positive for SARS-CoV-2. There were 37 false negatives and 2 false positives, corresponding to a sensitivity and specificity of 86.1% [95% CI 81.3-90.0%] and 99.9% [95% CI 99.5-100.0%], respectively. The Panbio test reliably detects most cases of SARS-CoV-2 from adults in the community setting presenting within 7 days of symptom onset using nasopharyngeal swabs. Throat and saliva swabs are not reliable specimens for the Panbio.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Nasopharynx/virology , Pharynx/virology , Saliva/virology , Adult , Aged , Aged, 80 and over , Canada , False Negative Reactions , False Positive Reactions , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Specimen Handling
6.
Article in English | MEDLINE | ID: mdl-36340215

ABSTRACT

Background: The recent emergence and rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrates the urgent need for laboratory-developed assays for clinical diagnosis and public health interventions in the absence of commercial assays. Methods: We outline the progression of reverse-transcriptase polymerase chain reaction (RT-PCR) assays that were developed and validated at the Alberta Precision Laboratories, Public Health Laboratory, Alberta, Canada, to respond to this pandemic. Initially, testing was performed using SARS-CoV-2-specific and pan-coronavirus gel-based assays that were soon superseded by real-time RT-PCR assays targeting the envelope and RNA-dependent RNA polymerase genes to accommodate the high anticipated volumes of samples. Throughput was further enhanced by multiplexing the different targets together with the co-detection of an internal extraction control. Results: These assays are comparable in sensitivity and specificity to the assays recommended by the World Health Organization and the US Centers for Disease Control and Prevention. Conclusions: The availability of real-time RT-PCR assays early in the pandemic was essential to provide valuable time to local health authorities to contain transmission and prepare for appropriate response strategies.


Historique: La récente émergence et la propagation mondiale rapide du coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) a démontré l'urgence de créer des dosages en laboratoire pour poser un diagnostic clinique et adopter des interventions sanitaires en l'absence de dosages commerciaux. Méthodologie: Les chercheurs exposent la progression des dosages d'amplification en chaîne par polymérase couplée à la transcriptase inverse (RT-PCR) mis au point et validés par les Alberta Precision Laboratories du Laboratoire de santé publique de l'Alberta, au Canada, pour répondre à cette pandémie. Les tests ont d'abord été effectués au moyen de dosages sur gel spécifiques au SARS-CoV-2 ou décelant tous les coronavirus, mais ont vite été remplacés par des dosages RT-PCR en temps réel ciblant l'enveloppe et les gènes d'ARN polymérase sous la dépendance d'ARN pour répondre au fort volume anticipé d'échantillons. Le criblage a également été renforcé par le multiplexage conjoint des différentes cibles et la codétection d'un contrôle d'extraction interne. Résultats: Ces dosages ont une sensibilité et une spécificité comparables à ceux recommandés par l'Organisation mondiale de la Santé et les Centers for Disease Control and Prevention des États-Unis. Conclusions: Il était essentiel de disposer de dosages RT-PCR au début de la pandémie pour que les autorités sanitaires locales puissent profiter de temps précieux pour contenir la transmission et préparer les stratégies de réponse appropriées.

7.
J Clin Microbiol ; 58(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32513860

ABSTRACT

An outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) began in Wuhan, Hubei, China, in December 2019 and spread rapidly worldwide. The response by the Alberta Precision Laboratories, Public Health Laboratory (ProvLab), AB, Canada, included the development and implementation of nucleic acid detection-based assays and dynamic changes in testing protocols for the identification of cases as the epidemic curve increased exponentially. This rapid response was essential to slow down and contain transmission and provide valuable time to the local health authorities to prepare appropriate response strategies. As of May 24, 2020, 236,077 specimens were tested, with 6,475 (2.74%) positives detected in the province of Alberta, Canada. Several commercial assays are now available; however, the response from commercial vendors to develop and market validated tests is a time-consuming process. In addition, the massive global demand made it difficult to secure a reliable commercial supply of testing kits and reagents. A public health laboratory serves a unique and important role in the delivery of health care. One of its functions is to anticipate and prepare for novel emerging pathogens with a plan for pandemic preparedness. Here, we outline the response that involved the development and deployment of testing methodologies that evolved as SARS-CoV-2 spread worldwide, the challenges encountered, and mitigation strategies. We also provide insight into the organizational structure of how a public health response is coordinated in Alberta, Canada, and its benefits.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Diagnostic Services/organization & administration , Molecular Diagnostic Techniques/methods , Pneumonia, Viral/diagnosis , Public Health Administration/methods , Alberta , COVID-19 , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2
8.
Emerg Infect Dis ; 25(8): 1556-1559, 2019 08.
Article in English | MEDLINE | ID: mdl-31310222

ABSTRACT

We identified a novel recombinant GII.P16-GII.12 norovirus associated with epidemic and endemic gastroenteritis during March 1, 2018-February 12, 2019, in Alberta, Canada. GII.12 viruses have not been detected in Alberta since 2000. Comparing the full genome of this strain to previously published sequences revealed this virus to be a novel recombinant strain.


Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Gastroenteritis/epidemiology , Gastroenteritis/virology , Norovirus/genetics , Recombination, Genetic , Alberta/epidemiology , Evolution, Molecular , Genotype , Humans , Mutation , Norovirus/classification , Open Reading Frames , Phylogeny , RNA, Viral
9.
J Clin Microbiol ; 57(4)2019 04.
Article in English | MEDLINE | ID: mdl-30760529

ABSTRACT

Measles is one of the most contagious viral respiratory infections and was declared to be eliminated from Canada in 1998; however, measles cases and outbreaks still occur every year through reintroduction from other parts of the world. Laboratory confirmation of measles virus (MV) RNA by real-time PCR provides a definitive diagnosis, and molecular analysis to determine the genotype is the only way to distinguish between wild-type and vaccine strains. This distinction is important since live attenuated vaccine strains are able to replicate in the patient and can be associated with rash and fever but are poorly transmissible, if at all. Prompt reporting of measles cases to local authorities, including differentiation between wild-type and vaccine strains, allows for optimal management and contact tracing. The development and validation of a multiplex real-time reverse transcription-PCR (rtRT-PCR) assay for the simultaneous detection and differentiation of the Moraten and Schwarz vaccine strains from presumptive wild-type MV in a format that can be easily implemented for high-throughput testing of patient samples are reported here. This assay is sensitive, specific, reproducible, and 100% accurate in comparison with the gold standard comparator assay.


Subject(s)
Measles Vaccine/genetics , Measles virus/genetics , Measles/virology , Multiplex Polymerase Chain Reaction/standards , Genotype , Humans , Measles/diagnosis , Measles virus/isolation & purification , RNA, Viral/genetics , Sensitivity and Specificity , Vaccines, Attenuated , Viral Proteins/genetics
10.
J Virol Methods ; 229: 16-23, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26711555

ABSTRACT

Herpes simplex viruses (HSV) and varicella zoster virus (VZV) can have very similar and wide-ranging clinical presentations. Rapid identification is necessary for timely antiviral therapy, especially with infections involving the central nervous system, neonates, and immunocompromised individuals. Detection of HSV-1, HSV-2 and VZV was combined into one real-time PCR reaction utilizing hydrolysis probes. The assay was validated on the LightCycler(®) (Roche) and Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher Scientific Inc.) to detect alphaherpesviruses in cerebral spinal fluid (CSF) and lesion swab specimens, respectively. Validation data on blood and tissue samples are also presented. The multiplex assay showed excellent sensitivity, specificity and reproducibility when compared to two singleplex real-time PCR assays for CSF samples and direct fluorescent antigen/culture for lesion swab samples. Implementation of the multiplex assay has facilitated improved sensitivity and accuracy as well as reduced turn-around-times and costs. The results from a large data set of 16,622 prospective samples tested between August 16, 2012 to February 1, 2014 at the Provincial Laboratory for Public Health (Alberta, Canada) are presented here.


Subject(s)
Cerebrospinal Fluid/virology , Herpesvirus 3, Human/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Simplexvirus/isolation & purification , Skin/virology , Alberta , Canada , Chickenpox/diagnosis , Encephalitis, Viral/diagnosis , Herpes Simplex/diagnosis , Humans , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity
11.
Mol Cell Probes ; 29(2): 81-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25681753

ABSTRACT

Detection of all enteroviruses while excluding cross-detection of rhinoviruses is challenging because of sequence similarities in the commonly used conserved targets for molecular assays. In addition, simultaneous detection and differentiation of enteroviruses and parechoviruses would be beneficial because of a similar clinical picture presented by these viruses. A sensitive and specific real-time RT-PCR protocol that can address these clinical needs would be valuable to molecular diagnostic laboratories. Here we report a multiplex nucleic acid based assay using hydrolysis probes targeting the 5' non-translated region for the detection and differentiation of enteroviruses and parechoviruses without cross-detection of rhinoviruses. This assay has been shown to detect enteroviruses belonging to the different species in a variety of specimen types without detecting the different species of rhinoviruses. Laboratory validation shows the assay to be sensitive, specific, reproducible, easy to set up and uses generic cycling conditions. This assay can be implemented for diagnostic testing of patient samples in a high throughput fashion.


Subject(s)
Enterovirus Infections/diagnosis , Enterovirus/isolation & purification , Parechovirus/isolation & purification , Picornaviridae Infections/diagnosis , Enterovirus/genetics , Enterovirus Infections/virology , Humans , Parechovirus/genetics , Picornaviridae Infections/virology , Reverse Transcriptase Polymerase Chain Reaction
12.
J Clin Microbiol ; 50(1): 25-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22090403

ABSTRACT

Clinical cervical cytology specimens (n = 466) collected in PreservCyt (Hologic Inc.) were used to evaluate the agreement between Hybrid Capture 2 (hc2; Qiagen) and cobas 4800 (c4800; Roche Molecular Diagnostics) for the detection of high-risk human papillomavirus (HR HPV) genotype infections. The agreement between the two assays was 93.8% (kappa = 0.87; 95% confidence interval, 0.828 to 0.918), with 186 and 251 concordant positive and negative results, respectively. All 186 concordant positives were confirmed using the Linear Array (LA; Roche Molecular Diagnostics) genotyping test. Of the 29 samples with discordant results (6.2%), 18 were hc2 positive and LA verified 17 as positive for HR HPV. Eleven discordant specimens were c4800 positive, and LA confirmed 5 as positive for HR HPV. As of October 2009, practice guidelines in Alberta, Canada, recommend reflex HPV testing for women over 30 years old with atypical squamous cells of undetermined significance (ASCUS) and for women over 50 years old with low-grade squamous intraepithelial lesions (LSIL) to help prioritize those who should undergo further evaluation. In this study, agreement between hc2 and c4800 results for samples from women over 30 years old with ASCUS cytology was 92.3% (n = 13), while no samples from women over 50 years old with LSIL cytology were identified for analysis.


Subject(s)
Molecular Diagnostic Techniques/methods , Papillomaviridae/isolation & purification , Papillomavirus Infections/diagnosis , Specimen Handling/methods , Virology/methods , Adolescent , Adult , Alberta , Culture Media/chemistry , DNA, Viral/genetics , DNA, Viral/isolation & purification , Female , Genotype , Humans , Middle Aged , Papillomaviridae/classification , Practice Guidelines as Topic , Young Adult
13.
J Clin Microbiol ; 47(11): 3454-60, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19726603

ABSTRACT

Tracking novel influenza viruses which have the potential to cause pandemics, such as the pandemic (H1N1) 2009 virus, is a public health priority. Pandemic (H1N1) 2009 virus was first identified in Mexico in April 2009 and spread worldwide over a short period of time. Well-validated diagnostic tools that are rapid, sensitive, and specific for the detection and tracking of this virus are needed. Three real-time reverse transcription PCR (RT-PCR) assays for the amplification and detection of pandemic (H1N1) 2009 virus were developed, and their performance characteristics were compared with those of other published diagnostic assays. Thirty-nine samples confirmed to be positive for pandemic (H1N1) 2009 virus from Alberta, Canada, and six additional samples that were positive for influenza A virus but that were not typeable by using published seasonal influenza H1/H3 virus assays were available for this validation. Amplification and direct sequencing of the products was considered the "gold standard" for case identification. The new assays were sensitive and able to reproducibly detect virus in a 10(-6) dilution of 4 x 10(6) 50% tissue culture infective doses/ml when 5 microl was used as the template. They showed 100% specificity and did not cross-react with other respiratory viruses or seasonal influenza A virus subtypes. The coefficient of variation in crossing cycle threshold values for the detection of different template concentrations of pandemic (H1N1) 2009 virus was < or =3.13%, showing good reproducibility. The assays had a wide dynamic range for the detection of pandemic (H1N1) 2009 virus and utilized testing platforms appropriate for high diagnostic throughput with rapid turnaround times. We developed and validated these real-time PCR procedures with the goal that they will be useful for diagnosis and surveillance of pandemic (H1N1) 2009 virus. These findings will contribute to the informed management of this novel virus.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Alberta , Cross Reactions , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/virology , RNA, Viral/genetics , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...